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We give three globally convergent iteration schemes for finding zeros of

maximal monotone operators in Hilbert spaces. We assume that the operators are

defined in the whole space and are either continuous, grow at most linearly at

infinity or map bounded sets into bounded sets. As applications we have globally

convergent iteration schemes for minimizing convex functionals in Hilbert spaces.
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SIGNIFICANCE AND EXPLANATION

One of the main problems in numerical mathematics is to construct solutions

to equations f(x) = 0. It is important to know whether solutions can be found

• by iteration, i.e. using only a countable number of evaluations of f. In this

paper we give convergent iteration schemes for operators which in a mathematical

sense form a well defined general class, including, e.g., minimization of convex

functionals. Although in many practical cases the convex functional would have

some additional properties which imply that the usual gradient method would con-

verge, we do not know of any previous iterative algorithms which would always

converge for the general class of functionals considered here.

Our schemes all have the following important properties: only qualitative

assumptions on the operators are made, one does not have to know whether solutions

exist, and the schemes work independently of the initial guess. On the other

hand, demanding all these properties implies that the convergence may be very

slow.

The responsibility for the wording and views expressed in this descriptive sun~nary
lies with NRC, and not with the author of this xe~~5t. o 3 
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GLOBAL ITERAT I ON SCHEMES FOR MONOTONE pi:pi i-~~~~;

Olavi NeVanlinna

1. i n t r~~~u-:t~~~r,.

in  th is paper we consider iteration schemes to find zeros of monotone operator~; in

N i i L . i t  HiCc! . Let H be a real Hu bert space. A possibly multivalued operator i\ is

said t be monotone if

(1.1) (y
1 

— y2, x1 
— x2) 0 for all x1 0(A) and y. Ax .

A is maximal monotone if it is monotone and there does not exist any monotone Proper exten-

sion of A. Examples of maximal monotone operators are subdifferentials ~ of proper con-

vex lower semicontinuous functionals ~ , and finding solution of e~ (x) 0 is equivalent

to minimizing ~~~.

We shall show, using ideas of Bruck (3) and Crandall and Pazy (41, that if A ic defined

in the whole space and is either continuous or grows only linearly at infinity, then we can

find seque.ices 
~~n~’ 

{8
n} such that if

(1.2) x € x — A (Ax + 6 xni-i n n n n n

then x~ converges strongly to a solution of Ax 3 0, if there exists any, otherwise it

tends to infinity. In particular, we can fin~ the minimum of any lower semicontinuous convex

functional which is either continuously differentiable or grows only quadratically at infinity.

Assume for a while that A is strongly monotone, i.e. it is of the form bI + B , where

b - 0, I is the identity operator and B is maximal monotone. Then R (bI + B) H and

bx + Bx 0 has a unique solution. Any strictly contractive mapping T:H -b. H,

Tx - Tyl < k~x - y~ , k 1, gives an exasple of such operators by defining A I - T

(~ (l-k) 1 + (kI-T )) ,  and the zero of A , or the fixed point of T, can be obtained by

Picard—Lindel~f iteration

(1.3) x — Txn+l n

Permanent address t Department of Mathematics, Oulu Universit y, 90101 Oulu 10, Finland.
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U 0 is Lipschitz—continuous then we can still Lt ,rat. in the form

( 1 .4 )  x x — A (Bx + bx
ni-I n n n

provided A is small enough, and this was used by Zarantonello (RJ to prove the existence

of a zero for those operators. Lipschitz-continuity can be weakened, in a natural way, into

two directions : assuming that the operator satisfies a linear growth condition or assuming

only continuity. In both cases the zero can be found by iteration in the form

(1.5) x x — A (Bx + bxn+l n n n n

where (An) is a sequence of possitive numbers. Bruck (2)  considered (1.5) with 
~n 

=

for operators which have open domains, but his result i~ then local in the sense that conver-

gence is guaranteed only when the initial value is chosen close enough to the solution. In

section 4 we state a global version of this result by assuming that A satisfies a linear

growth condition.

Continuous monotone operators are maximal and therefore bx + Bx = 0 has a solution.

In (4) Crandall and Paz~ gave a constructive proof for the existence of a solution in general

Banach spaces. It uses iteration of the form (1.5) where A is decided at each step using

a finite number of evaluations of Ax.

If the operator is not strongly monotone schemes of tho form

(1.6) x r x — A Ax
ni-i n n n

can still be used if the operator satisfies a convergence condition (61, but without some

additional properties, even when A is the gradient of a convex functional, we generally do

not have strong convergence. To obtain strong convergence in such a case we use the method

of regularization: we apply the scheme (1.6) to o;,erators A + 6 1  and let 0
n tend to zero

as fl ~~ . The problem is to define (An) and {O~ ) in such a balanced way that strong con-

vergence to a correct solution is obtained . Here we use ideas that go back to Bruck (31 and

Halpern (5) .

We also show that if A is defined in the whole space and is bounded, the n we can always

define a convergent scheme of the form (1 .2) ,  which uses a finite number of rein it ialj zations.
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2. ~~~~~~ l t f ; .

Let A ~~, - a maximal monotone operator in a Hu bert snace H. In our first r ,~ ;i 1t A

is assumed to be continuous and in the second A satisfies a growth condition f the form

(2.1) yJ ~~C (l + x l ), for all x , and y ‘ Ax

F i n a l l y ,  in the third result we assume that A maps bounded sets into bounded ~ots .

The algorithms can be appli d without knowing whether there exists solutions cr not, and we

do not assume anything on the modulus of continuity, nor one has to know the value of LI.. con-

stant C in (2.1).

We state the result first for continuous operators . Let {h )  be a decreasing sequence

of reals such that u r n  h = 0, and let f r }  be a decreasing sequence satisfy ing

u r n  r = ~ . u r n  —a-- 1. Choose a decreasing function ~s ( s)  satisfy ing

(2.2) f ~ (s)ds 
-

0

and such that for all  s~ > 0 there exists 6(t,s
0
) so that

(2.3) q~(s)  ~ ~( t ,s
0

) i4i(s+t) , for s > s0, 
t > 0

For example , ~~~ = 5 a 
with a > 1 is such a function. Finally fix a number o > 0. Set

A
0 = h

0
, 0

0 
= r

0 
and n(0) = 0, where n(i) will be an increasing sequence of integers,

such that 6 r for n(i) < n < n(i+l). Now let A be the largest h .‘ {h I such tha tn 1 — n n

(2.4) IA(x n 
— h(Ax + On

X
nfl 

- AX — hO
n
(AX

n 
+ e x ) l  <* (~~~~A~~)

Such an h exists since A is continuous. If

(2.5) 0 ~ A
1 ~~~

i—n (i)

then set n (i+l) — n + 1, and 6n+1 r~~1. otherwise keep 0n+1 
ri

Theorem 1. Let A be a maximal monotone continuous operator in a HUbert space with

D(A) — H. Assume that {x~ } satisfies (1.2) with any initial value x0 H, where

—3—
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(0) are defined recursively as above by (2.4) and (2.5). If A 10 j~ 0, then X
n

converges strongly to p, where p is the element in A ’0 with minimum norm , and if

A
10 = 0, then X l  + as n -* = in such a way that O x  converges to -a0 where a°

is the element in R(A) with minimum norm.

CI

The proof is postponed to section 3.

If instead of continuity we assume that A satisfies a growth condition of the form

(2.1) then the sequences (A l, (O
n

) can be chosen independently of the operator A. The

following definition is essentially as in (3) :

Definition. Two sequences { A
n

}
~ 

(O
n

) of positive real numbers are acceptably paired if

(O n
) is nonincreasing, u r n  0 0, and there exists an increasing sequence (n(i)} of in-

tegers such that

n(i+l)—l
(2.6 ) u r n  jnf ~ ~ A . > 0

‘~ j=n(i) ~

n(i+l)-l
(2.7) u r n  sup 8 (i) ~ A

1 ~ = 
-

n-~~ 
n j=n(i)

n(i+l)—l
(2.8) u r n  (0 — 6 . I A = 0

n(i) n(,.+l)  
j=n(i)

0

Part of the proof of Theorem 1 consists of showing that the recursive procedure (2.4), (2.5)

always generates acceptably paired sequences. Another example of acceptably paired sequences

is the following (31: A — n 1, 0 — (log log n) ’, n(i) — i~

Theorem 2. Let A be a maximal monotone operator in a Hithert space and assume that it

is defined in the whole space and satisfies the growth condition (2.1) for some C ~

Assume that {A~ } s and that (A l, ( e l  are acceptab ly paired. If (x l  satisfies

(1.2) with any initial value x0 c H, then the conclusion of Theorem 1 holds.

0

The proof of this result is given in section 4.

Assume now that A is defined in the whole space and is only bounded, i.e. it maps

bounded sets into bounded sets. We give an iteration schema which uses reinitialiaation if

-4-
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x tends to be too big.
n

Consider the scheme

(2.9) xp 
s x ~~— y A ( A x~~+ O x ~

’) , X~~= xn+l n p n  n n n  0 0

where y is any decreasing sequence such that lim y = 0, and (~~ }, (O
n) are acceptably

paired and ( A )  € cI~oose an increasing sequence (RI such that lim R =

Now compute (x v) for a fixed p using (2.9), as long as (x~ - x
0( < n .  :f

I x”i-1 - x0 1 > R ,  then start computing the sequence {x~
4 i } .

Theorem 3. Let A be a bounded maximal monotone operator, and assume that {x~ } is

ttained using the procedure described above. If A 10 ~I 0, then,for some p, Ix ~ - x
0~ 

< H

for all n , and x1
~ tends to the minimum element in A 10; otherwise A

1
0 = 0 and p

tends to infinity.

0

Proof. We observe first that if A 10 = ~. p tends to infinity. In fact, otherwise

for some fixed p, {x~) c BR (xo) for all n, where B~~z) denotes the closed ball of

radius a, centered at z. But then A , operating only in BR 
(x

0
) can be thought of as

satisfying the growth condition (2.1) and,bv Theorem 2, we would have A
10 

~‘ 0 and x~

converging to the minimum element in A ’O. Therefore , the only thing we have to prove is,

that if A 10 � 0 then p cannot tend to infinity .

Consider the scheme

(2.10) x € x — yX (Ax + 0 xn+l n n n n n

where y > 0 and {A }, {e~
} are as in (2.9) . A theorem of Bruck (3, Theorem 3) includes

the following result: If y ~ A
’O and for son: r > ly l,  x0 

€ Br ( Y)  and A is defined

and bounded in B2
(y), then there exists a y - ,  0 such that if y — y , then x stays

in B2 (y) and converges to the minimum element in A 10. It is evident from the proof of

this result that the same conclusion actually holds for all y a (0,y ) .

If A ’O ~I 0, let r — max {~y~, ~x0—y~ ) ,  for some y € A ’O. Then , as p grows, there

is a p,~ such that y < y and R > 3r , so that we must havep
0 p0

—5—

I
-

L

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _

- — — — — - ~
__

_ -.-.,.I___-J -___________

— ~~~~~~~~~~~~~~ -. — 
‘

~~ ~~ — 4— — —



{x max) C B ) (y) C B
R

(xO
) for some p < p

0
. and the proof is complete.

0

Continuous monotone operators are maximal, but in the situations discussed by Theorems

2 and 3 it may happen that we do not know the maximality of the operator. However , even if

the operator is not maximal, the schemes are well defined and the conclusions hold, with the

modification that the convergence takes place exactly when there exists a monotone extension

A of the operator A such that A~~O 3i 0.

-6-
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3. Proof of Tho rem

-rho proof c i ~ .t~; formally of tso parS ~;. ~~~riot c by p the unique vector ruc h  that

( 3 .1)  + Ap 5)
o r ,  n

We show that the sequence (xi  generated by (1.2), (2.4), (2.5) behaves for large n as

and , in fact this is true in any Fsanach space for continuous accretive operators.

However, in general A 1
0 � 0 does not imply that 1

~ n 1 converges. In Hilber-t spaces this

always happens and in particular the convergence of ( x i  follows.

~~~~~ = (I  + IA)
1, so that 

~n 
= 3 1 0. Now the behavior of p follows from the

following result.

Lesuna. Let A be any maximal monotone operator in a Hilbert space. Then

~~~1 0
(3.2) u r n  

~
- 3

1
0 = —a

where a° is the element in RCA) with mjnirnum norm. If A
1
0 = 0 then Ij o l  -‘- as

A -
~ -‘- , and i f  A 1

0 s” 0, then 310 r~ a~ • where p is the ~1ement in A 10 with

minimum norm.

D

Proof. Let B
~ 

denote the Yosida approximation of a maximal monotone operator B:

= t 1( I  — 
~~~~~~~~~~ 

where = (1 tB)
1
. One verifies easily that = (B~~ )

1 0.

Now Jt
(B)0 tends to the minimum element in D(B) as t ~ (1 , Theorem 2.21. Therefore

(B 1)1 
0 tends to the minimum element in D(B) as t • 0. For B

1 
= A this means that

Urn A
t
O — a°, and (3 .2)  follows ;ince 

~ 
3~ 0 = _A

t
O. We also know (1, Proposition 2.61 that

tends to the minimum element in BO as t -* 0 if 0 € D(B), otherwise lB
~
0l -.

Using this for (A 1)
1 
0 with t . yields the rest of the Lenuna.

We consider first the following implicit iteration scheme

( 3 .3 )  ~i + (Ax + (I x ) 7 x + e .
n+l n n+l n n+1 n n

— 7—
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Proposition 1. Let A be maximal monotone and (A ), {0
n
} be acceptably paired. Assume

that {x} satisfies (3.3) so that ~ e~ < ~~ . If A ’O ~1 0, then x converges to the

minimum element in A 10, otherwise lX nl ~ ~ in such a way that _O
n
X
n 

converges to the

minimum element in R(A).

0

Proof. There exists a unique sequence {y} with y~ a Ax
n 

such that (3.3) holds. For

s~nplicity we shall denote the element also by 
A x. First we reduce the problem to the case

where e 0. In fact, if the conclusion holds for e 5 0 it also holds if {e I has coin—

pact support. Then, approximating 
~~~ 

€ t~ by a sequence {e~) with a compact support

and using the fact that the resolvents are contractions we have

(3.4) lx — I < £n n —

if ~ ~e. - < c, which completes the reduction.
j 0  :i

Subtract P~ (j) 
from both sides of (3.3) to get

(3.5) ( l + A 0 ) x  — p  . + A A x  ~~x — p
n n n+l n(1) n n+l n n (i)

Using (3.1) we obtain

(1 + A 0 ) ( Xn+l — 
~n(i)

1 + (A nOn 
— AnOn(i))Pn(i)

(3.6)
+ X AX - A A p  . x - p

n n n n(i) n n(i)

where AP~ (j) stands for the element satisfying efl(j )Pn(j ) + AP ( j )  
) 0. Since A is

monotone (3.6) yields

(1 + AnOn
) Ix~+1 

— 

~n(i)
t — Anle n — O~ (j) I ‘~ n( i) 1 ~~- l~~ 

—

and iterating this from n(i) on we obtain

(3. 7) lx~ 
- 
~n ( i) ’ ~ 

+ xjej)~~ Ixn(j) - ~n (i) t + 
~~~~j~~n(i) 

- e~ l 
~n(i)

1

Since is nonincreasing we have

-8-



n (i+1)—l n(i+l)—l

TT (1 + 1 0 ) l iT (1 + A 9j n(i+l) 1i i  —j =n ( i )  )=n(i)

n (i +1)~~i
Rut (2. 1) and (2.0) imply that there exists ci > 0 such that 0n(i+l) 

~ 
~~

. x and

n(i+1)—1
hence fci some 6 < 1, if (1 + A 0 ) 1 

< 6. For the second term in (3.7) we obtain
i i  —

j=n Ci )

n(i+l)—l
‘n ( i ) - A 0 - — o I ~ A I~ 

— 0 - * 0 as i - by (2.8).j n(i) n(i+l)j n(i) j —j=n(i) j=n(i)

Hence , f o r  n(i) < n n(i+l) we have

(3.8) lx — 
~n ( i )  

< — p I + c
n — n(i) n(i) n(i) n(i)

and in particuuar

~
(3.9) X ( i 1) 

— P - 1 ~ 6jx — ( j )  n ( i )n(i) — n(i)

Since A is monotone we have

1 —

~n(i) 
— 

~n(i+l)
1 

~~
- 
~~n(i) 

— 
~n(i+1) 

+ lAp — Ap (i+1)) In(i) n

( 3 .  10)
= (10 — O ( i 1 ~ ~~nii+1)~~~

’n(i)1Cn(i)

70I n (i)

j
~~~ \n(i+l) )

From (2.6)-(2.8) we see that Urn — 1 = 0 Hence (3 9) and (3 10) yield

< I x  — p— 

~n(i+l) 
— n(i+1) n(i) n(i) 

- 
~n(i+1)

(3.11)
< 6lx — p  J -s- ci I~ I— n(i) n (i) n(i) n (i) ‘

0n(i)where Cl = t + - I -
~ 0 as i -~ ~~. But (3.10) and (3.11) imply thatn(x) n(i.

n(i+l)

xn(i+l) - 
~n ( i +l )  I IXfl(j) - ~n(i)(1 - ci + ci

n(i)
1 

1 + 

~n(i+l) 1 + P~(j)I n(i)

holds for ci -, 0 and 6 < 1 and thereforen(i)

-9—
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x 1i~ 
— 

~n fi)
(3.12) lini = 0

i-s~ 
1 +

using (3.8) we then obtain

lx - p . I
(3.13) lim max n ~~~ - =

i-’~ n( i) -cn<(i+l) 1 +

If A 10 ~i 0 then by Le~~a P~ (~ ) -, p~ where p is the minimum element in A 10, and

by (3.13), we also have lirn IX - pJ = 0. Assume then that A 1
0 0. By Lemma,

and _e
npn 

-* a°. From (3.13) it follows immediately that l x i  -, = as n ~ =. To prove

O x  -a°, consider, for mCi) < n < n(i+1),

(3 14) 
lO nXn 

— efl (f)Pfl(~) l x — 
~n(j)

1 
+ 

lO~(j) — en! Ix~ l
0n(i) + e

n(i)IPn(i)I — 1  + PPn(i) I 8 n(i) 1 + lP~(j)I

The first term on the right in (3.14) tends to zero as I + ~ by (3.13), and In the second

____________ 

0 ( i)  — 0 1  
0term 1 + IP (j ) I 

stays bounded while 0n(i) 
~ 0 as i ~‘• 

—. Since 0n(i)~n(i) 
• -a

we finally obtain OnX~ 
-a° as n —.

0

Schemes of the form (3.3) have also been discussed in (71.

Assume now that A is defined in the whole space and is continuous. Following the idea

in (4) we write the explicit scheme (1.2) as an implicit scheme (3.3) with errors:

(3.3.5) X~~~1 
+ A (Ax 1 + e x +1) = X + C

where

(3.16) 0 — A (Az 1 - Ax + 0n~~n+1 
-

Proposition 2. f {A~ ) and (en) are chosen according to the procedure described by (2.4>

and (2.5) , then I le~ I ‘ ~ , and (A ) ,  (0) are acceptably paired .
n—0 

• 1
Proof Using (2 4) we have

HI 
-10-
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n~O
Ie
~~ 

= 

n~O~~ ~n+1 
- Ax + 0

n~~ n+1 — x )  1

n-i

n=0 j=0 ~

But (2.2) and (2.3 )  imply that

n-i n

~ A p C  ~ A .) ~ 5(h
0

,h
0
) 

~ 
A
n ‘~( ~ 

A .)
n—0 j=0 ~ n 0  j=O ~

< 6(h0 ,h~ ) J~~)(s) ds < = ,
0

which proves that 
~ 

l e I  < .

n 0

If (2.5) holds, then we have

n(i+])—].
a + r h  > 0  ~0 0 —  n (i) .jn (i)

since A. -C and 0
n(i) ~ r~ and together with -

~ 1 these imply that {A ),

( e }  are acceptably paired. Assume therefore that for some n(i) there does not exist

any n such that (2.5) holds, i.e.

n
(3.17) 0 . A < ci for all nnU) 

j ’~n(i)

This leads to a contradiction: Consider the scheme (3.3) with 0 5 0 . 0 > 0 andn n ( i )

assume that ~ A < = and 1 Ie~ I < . One proves easily that x converges to some
n=0 n—0

In fact, if (en] has compact support then,for large enough n,lAx + O x j  is nonin-

creasing and therefore for some C <

~ 1X 1 
- x l  < C 

~ 
A + ~ le~ I

n 0  n=0 n=0

and so {xn) is a Cauchy sequence. The general case follows using the same approximation

argument as in the proof of Proposition 1.

—11—



Since A is continuous there is an h € (h I such that
n

IAc x~ 
- h(Ax + ex,,) )  — Ax , — he(Ax ,~ +

But then also

IA(x — h(Ax + Ox ) )  — Ax — hO (Ax + ex
n n n n n n

n- 1
~~. *( I A 4)

3=0

for large enough n and therefore An > h, contradicting the assumption { A )  €

0

Theorem 1 follows by combining Proposition 1 and Proposition 2.

0
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4. Proof of Theorem 2.

In [3) Bruck proves a convergence result for general maximal monotone operators using

(1.2), under ‘-he assumption that A 10 ~‘ 0, (x i is defined , and both {xJ , {y ) , y ‘ Ax

are hounded. He then applies the result to prove the existence of a convergent iteration

oclien i. f ’ ,r operators which are bounded in a ball centered by a p A 10. The scheme is de-

fined , however , only after we have a priori knowledge on the location of A 10 and the

boundedness of A. Theorem 2 is a different version of Bruck ’s result in the sense that it

only assumes a qualitative growth condition to be satisfied; one does not have to know that

solutions exist and one can start from any initial vector.

We could prove the part of Theorem 2 where A 10 ~i 0 by showing that C x )  is bounded

and then using the result of Bruck (3). However, when showing that (xl is bounded we

essentially shall get the convergence as well, and therefore we give here the complete proof.

Let again 
~n 

be defined by 0
n~n 

+ Ap ) 0. We also denote by Ap the element w

in the set Ap which satisfies 8 p + w = 0, and, similarly, we denote by Ax the
P n n n  n n

vector (x - x 1/A - 8 x . Subtracting p from both sides of (1.2) yields
n n+l n n n  n(i) -

(4.1) x — p .  = x  — p .  — A (A x  + 0 x )
n+l n(i) n n ( i )  n n n n

Squaring both sides of (4.1) and rearranging yields

IX 1 - Pn(i)I = Ix ~ 
- 
~n(i)

1 + 2X (O (~) 
— 8) (X , X -

(4.2) — 2A (Ax + 0 x , x — pn n n(i) n n n(i)

+ A 2IAx + e x I
2

Since A is monotone and 8n i~~n i  
+ ~~~~~ 0, we have (Ax + On(i)3C

n P 3tn 
—

0n (i )  ~~ 
- 

~n(i) 
2 using (2.1) the last term on the right of (4.2) can be bounded in the

form

lAx~ + 0 x 1
2 < c 1{l + lx~ 

— Pn(i)1
2 

+ lPn(i)1
2}

For the second term we write

l (x~ 
x - 

~n(i)~~ 
< Ix - 

~n (i) 1 + 
~~ 

x - P~(j)I
2 

+ 
~~~ 

IPn(i)I
2

— 13—
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Substituting these into (4.2) yields

- P~~j)l
2 

~. Cl - 8~ ,fl(j))IX fl 
- P~(1) I

2 
+ ‘fn,n (i)U + IPn (i)I

2)

where

8n,n(i) = 2An_lOn(i) 
— 2(1 + “

~/2 ) A
fl
l8~ (j) 

— On I — C1A~

and

A 2
1n,n(i) 

= n/n len(j, — OnI + C
1
A,

Since ( A )  € ~2 and the sequences are acceptab ly paired we have for large enough n(i) and

some a~ > 0, a2 -a = that

n(i+1)—l n
(4.4) 

j =n(i) 
8j ,n(i) ~ 

and 
j=~~(i)~~~””~~ 

~~ ~~~~~

for n (i) - n < n(j+l) , and if we denote

n( i+i)—1

J=n(i) 
Ti,nU) = £

( i )

then u n  £ 0.n (i)

Iterating (4.3) from n (i) on yields together with (4.4) that for n(i) large enough

we have

(4.5) Ix n (t+l) - ~n( i ) 1 < 6 IX ~~~> 
- P~(j)I

2 
+ £fl(j)

(l +

for some 6 -a 1, and for some D -a = and n (i) ~ n < n(i+1),

(4.6) l ”,~ — P~~~ l
2 

~~. 
D IX n (i) 

— P~(j)I
2 

+ 
~n(i)~~ 

+ lPfl(i)l
2
~

Now one completes the proof as in the proof of Proposition 1 using (4.5) and (4.6) in place

of (3.9) and (3.8) .

0

To the end we state a simple regult for operators of the form bI + B.

—14—
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Propos ition 3. Let H be maximal monotone , D ( B )  = H and assume that B satisfies the

growth condition (2.1). Assume also that b — 0 and (A l  ‘ i
2 ~~~~. If (x i  satisfies

(1.5) , then it converges to the unique solution of bx + Bx 0.

(3

The proof is easier than that of Theorem 2 and is left to the reader. Related results are

proved in (2), (6].
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